Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
Japanese Journal of Zoo and Wildlife Medicine ; 27(2):111-118, 2022.
Article in Japanese | CAB Abstracts | ID: covidwho-2274750

ABSTRACT

Against a pandemic of emerged infectious disease, COVID-19, new generation vaccines based on nucleic acids or recombinant viruses, which had not been used as vaccines in humans, have been inoculated and shown to be successful. They are, however, heat-labile and need a cold-chain including deep-freezers for storage and transportation. Vaccinia virus (VAC) vector vaccine (VACV) is a pioneer of new generation of vaccines constructed by using molecular biological technology. VACV, which has contributed to eradication of smallpox, has excellent characteristics of vaccinia virus such as a high heat-stability and long-lasting immunological effects. It is possible to distinguish the immunological responses of vaccination from those of natural infections. We started our developmental researches 35 years ago, using attenuated VAC strains established in Japan. In this article, we first describe the early researches of VACVs;development of two VACVs for Bovine leukemia virus and Rinderpest morbillivirus antigens and their protective immunity in large mammals, sheep and cows. Second, application of VACV is described;Rabies-VACV, which has already been licensed, used in the field in Europe and USA, and resulted in a prominent decrease of rabies. Then, current status of VACV research is described;non-replicating VACVs in mammalian cells have been developed as new-generation and ultimately-safe vaccines. We discuss the possibility of future application of VACV for wildlife.

2.
Surveillance ; 48(4):10-24, 2021.
Article in English | CAB Abstracts | ID: covidwho-1887621

ABSTRACT

Exotic pest and disease investigations are managed and reported by the Ministry for Primary Industries' (MPI's) Diagnostic and Surveillance Directorate. This article presents a summary of investigations of suspect exotic and emerging pests and diseases in New Zealand during the period from July to September 2021.

3.
Sel'skokhozyaistvennaya Biologiya ; 56(6):1079-1098, 2021.
Article in Russian | CAB Abstracts | ID: covidwho-1841718

ABSTRACT

The wide spread of viral infections and the ease of overcoming the species-specific barriers require the identification of critical stages in the virus interaction with multicellular organisms of mammals and the analysis of key molecular genetic systems involved. To date, a large amount of data has already been accumulated on the diversity and complexity of such systems, as well as the involvement in them the wide range of metabolic pathways. In this regard, attempts to identify some common elements that are implemented in different infectious processes are of particular relevance. This paper is such attempt made on the example of the analysis of the main events of cattle infection by bovine leukemia virus (BLV). Systems involved in the entry of BLV genetic material into the cytoplasm of host cells, the suppression of innate and adaptive immunity, as well as interactions between the genomes of the BLV provirus and the host genome are the identified critical stages. The direct participants in the reception of viral proteins are parts of some host tansmembrane systems (G.Yu. Kosovsky et al., 2017;V.I. Glazko et al., 2018;L. Bai et al., 2019;H. Sato et al., 2020). During virus reproduction in host cells, host enzymes modify virus envelope proteins by (A. De Brogniez et al., 2016;W. Assi et al., 2020). Importantly, modifications of SARS-CoV-2 spike proteins, as well as BLV envelope proteins, have a significant impact on their pathogenicity (M. Hoffmann et al., 2020). Pathogenicity and depressing effect of both BLV and SARS-CoV-2 on innate and adaptive immunity is realized in part through the activation of T regulatory cells and an increase in the expression of the growth transforming factor TGF-b (L.Y. Chang et al., 2015;G.Yu. Kosovsky et al., 2017;W. Chen et al., 2020). Intracellular mechanisms of protection against retrotranspositions, recombinations between viruses and host retrotransposons, the formation of new elements of host regulatory networks such as microRNAs, and the integration of proviral DNA into the host genome are closely related and controlled by interfering RNA (RNAi) systems with the key gene dicer1 (P.V. Maillard et al., 2019;E.Z. Poirier et al., 2021;G.Y. Kosovsky et al., 2020). These systems can provide a certain left-pointing-double-angle resistance right-pointing-double-angle of the host genome both to the integration of exogenous genetic material and to transpositions of own mobile genetic elements. Apparently, it is the polygenicity of the control of these critical stages of viral infection that leads to difficulties in predicting their development and developing methods for their prevention.

SELECTION OF CITATIONS
SEARCH DETAIL